Assessment of Paratuberculosis international official reporting in Europe using the information supplied to the WOAH by National Veterinary Services


Mycobacterium avium subsp. paratuberculosis
Survival analysis
Cox proportional hazards regression analysis

How to Cite

Fanelli, A., Galgano, M., Sposato, A., & Buonavoglia, D. (2022). Assessment of Paratuberculosis international official reporting in Europe using the information supplied to the WOAH by National Veterinary Services. Veterinaria Italiana, 58(2). https://doi.org/10.12834/VetIt.2625.16709.3


The present study characterizes the epidemiological situation of Paratuberculosis (PTB) in Europe during the last 24 years, using the information officially reported to the World Organisation for Animal Health (WOAH) by the National Veterinary Services (NVS) of the European countries. The prevalence of PTB at country level was described during the study period. A Cox proportional hazards (PH) regression analysis was implemented to evaluate the reporting behaviour. The most affected countries were found in southern and western Europe, whereas PTB presence was lower in northern and eastern Europe. PTB was routinely declared as a notifiable disease in 65% of the countries. Less than 50% of the countries routinely implemented passive surveillance, and only 19%, reported active surveillance for disease detection. Results of the Cox PH regression indicate that the Gross National Income (GNI) per capita and the application of active surveillance significantly influence the recurrence of PTB reporting. In countries with lower and upper middle income, the hazard of recurrence is 0.13 and 0.18 times lower than in countries with high income. The hazard of recurrence in countries that infrequently and moderately applied active surveillance is 1.99 and 1.65 times higher than in countries that routinely applied active surveillance. Findings of this work highlight an important variation in the reporting behaviour, disease status and surveillance across Europe.


Akaike H. 1973. Information Theory and an Extension of the Maximum Likelihood Principle. In Proceedings of the 2nd International Symposium on Information Theory (B. N. Petrov & F. Csaki, eds). Akadémiai Kiadó, Budapest, 267–281.

Cáceres P., Awada L., Barboza P., Lopez-Gatell H. & Tizzani P. 2017. The World Organisation for Animal Health and the World Health Organization: intergovernmental disease information and reporting systems and their role in early warning. Rev Sci Tech Off Int Epiz, 36, 539–548.

Cárdenas L., Awada L., Tizzani P., Cáceres P. & Casal J. 2019. Characterization and evolution of countries affected by bovine brucellosis (1996–2014). Transbound Emerg Dis, 66, 1280–1290.

Carta T., Álvarez J., Pérez de la Lastra J.M. & Gortázar C. 2013. Wildlife and paratuberculosis: A review. Res Vet Sci, 94, 191–197.

Dufour B., Pouillot R. & Durand B. 2004. A cost/benefit study of paratuberculosis certification in French cattle herds. Vet Res, 35, 69–81.

Fanelli A., Buonavoglia D., Martinez Carrasco Pleite P. & Tizzani P. 2020a. Paratuberculosis at European scale: an overview from 2010 to 2017. Vet Ital, 56, 13–21. doi:10.12834/VetIt.1829.9692.3

Fanelli A., Tizzani P., Ferroglio E. & Belleau E. 2020b. Cheilospirura hamulosa in the Rock Partridge (Alectoris graeca saxatilis): Epidemiological Patterns and Prediction of Parasite Distribution in France. Diversity, 12, 484 https://doi.org/10.3390/d12120484

Fanelli A, Trotta A., Bono F., Corrente M. & Buonavoglia D. 2020c. Seroprevalence of Coxiella burnetii in dairy cattle and buffalo from Southern Italy. Vet Ital, 56, 193–197. doi:10.12834/VetIt.2321.13237.1

Fanelli A. & Tizzani P. 2020. Spatial and temporal analysis of varroosis from 2005 to 2018. Res Vet Sci, 131, 215–221. https://doi.org/10.1016/j.rvsc.2020.04.017

Fanelli A., Tizzani P. & Buonavoglia D. 2021. Crimean-Congo Hemorrhagic Fever (CCHF) in animals: global characterization and evolution from 2006 to 2019. Transbound Emerg Dis, 69(3), 1556–1567. https://doi.org/10.1111/tbed.14120

Food and Agricultural Organization of the United Nations. 2020. FAOSTAT. (http://www.fao.org/faostat/en/#home).

Gamberale F., Pietrella G., Sala M., Scaramella P., Puccica S. & Antognetti V. 2019. Management of Mycobacterium avium subsp. paratuberculosis in dairy farms : Selection and evaluation of different DNA extraction methods from bovine and buffaloes milk and colostrum for the establishment of a safe colostrum farm bank. Microbiologyopen, 8, 8,e875.

Garcia A.B. & Shalloo L. 2015. Invited review: The economic impact and control of paratuberculosis in cattle. J Dairy Sci, 98, 5019–5039.

Gontero C., Fanelli A., Zanet S., Meneguz P.G. & Tizzani P. 2020. Exotic Species and Autochthonous Parasites: Trichostrongylus Retortaeformis in Eastern Cottontail. Life, 10, 31.

Groenendaal H., Nielen M., Jalvingh A.W., Horst S.H., Galligan D.T. & Hesselink J.W. 2002. A simulation of Johne’s disease control. Prev Vet Med, 54, 225–245.

Harrell F. 1986. The Phglm Procedure. In SAS Supplemental Library User’s Guide, Version 5. Cary, NC, SAS Institute Inc.

Hruska K., Slana I., Kralik P. & Pavlik I. 2011. Mycobacterium avium subs. paratuberculosis in powdered infant milk : F57 competitive real time PCR. Veterinarni Medicina, 56, (5), 226–230

Humphry R., Stott A.W., Jones G.M. & Gunn G.J. 2001. An economic evaluation of Johne’s disease (paratuberculosis) in the beef herd using the Markov chain model. In Assessment of surveillance and control of Johne’s disease in farm animals in GB (G. J. Caldow , G. Gunn, ed). SAC, Edinburgh, 67–82.

Kleinbaum D.G. 1996. The Cox Proportional Hazards Model and Its Characteristics. In Survival Analysis Springer New York, 83–128.

Koets A.P., Eda S. & Sreevatsan S. 2015. The within host dynamics of Mycobacterium avium ssp. paratuberculosis infection in cattle: Where time and place matter Modeling Johne’s disease. Vet Res, 46, 61.

Kudahl A., Nielsen S.S. & Oestergaard S. 2011. Strategies for time of culling in control of paratuberculosis in dairy herds. J Dairy Sci, 94, 3824–3834.

Luini M., Foglia E., Andreoli G., Tamba M. & Arrigoni N. 2013. Control and certification plan for bovine Paratuberculosis of cattle: Criteria and cost-benefit analysis | Piano di controllo e certificazione per la paratubercolosi bovina: criteri e analisi costo-beneficio. Large Anim Rev, 19, 257–265.

Manning E.J.B. & Collins M.T. 2001. Mycobacterium avium subsp. paratuberculosis: pathogen, pathogenesis and diagnosis. Rev sci tech Off int Epiz, 20, 133–150.

Meske M., Fanelli A., Rocha F., Awada L., Caceres Soto P., Mapitse N. & Tizzani P. 2021. Evolution of Rabies in South America and Inter-Species Dynamics (2009–2018). Trop Med Infect Dis, 6, 98. https://doi.org/10.3390/tropicalmed6020098

McNees A.L., Markesich D., Zayyani N.R. & Graham D.Y. 2015. Mycobacterium paratuberculosis as a cause of crohn’s disease. Expert Rev Gastroenterol Hepatol, 9, 1523–1534.

Meske M., Fanelli A., Rocha F., Awada L., Soto P.C., Mapitse N. & Tizzani P. 2021. Evolution of Rabies in South America and Inter-Species Dynamics (2009-2018). Trop Med Infect Dis, 96(2), 98. doi: 10.3390/tropicalmed6020098.

Nielsen S.S. 2009. The 10th International Colloquium on Paratuberculosis. In Programmes on paratuberculosis in Europe Minneapolis, Minnesota, USA, 101–108.

Nielsen S.S. & Toft N. 2009. A review of prevalences of paratuberculosis in farmed animals in Europe. Prev Vet Med, 88, 1–14.

QGIS Development Team. 2017. QGIS Geographic Information System. Open Source Geospatial Foundation.

R Core Team. 2018. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.

Ritter C., Jansen J., Roth K., Kastelic J.P., Adams C.L. & Barkema H.W. 2016. Dairy farmers’ perceptions toward the implementation of on-farm Johne’s disease prevention and control strategies. J Dairy Sci, 99, 9114–9125.

Savova T., Petkov I., Dimitrova A., Petrova R., Manov V. & Lalkovski N. 2016. First case of paratuberculosis in cattle in Bulgaria, established by modern diagnostic methods. Bulg J Anim Husb, 3-6, 172–178.

Schoenfeld D. 1982. Partial Residuals for the Proportional Hazards Regression Model. Biometrika, 69, 239–241.

Shaughnessy L.J., Smith L.A., Evans J., Anderson D., Caldow G. & Marion G. 2013. High prevalence of paratuberculosis in rabbits is associated with difficulties in controlling the disease in cattle. Vet J, 198, 267–270.

Stott A.W., Jones G.M., Humphry R.W. & Gunn G.J. 2005. Financial incentive to control paratuberculosis (Johne’s disease) on dairy farms in the United Kingdom. Vet Rec, 156, 825–831.

Therneau T. 2020. A Package for Survival Analysis in R. R Packag version 32-3.

Tizzani P., Fanelli A., Negri E., Silvano F., Menzano A. & Molinar Min A. 2020. Haemoparasites in red-legged partridge (Alectoris rufa): first record of Haemoproteus sp. in Italy? J Parasit Dis, 44, 462–466.

Vidić B., Grgić Ž., Jovičin M., Rašić Z., Savić S. & Vidić V. 2014. Prevalence of paratuberculosis infection in sheep. Vet Glas, 68, 165–174.

Weber M.F., van Roermund H.J.W., Vernooij J.C.M., Kalis C.H.J. & Stegeman J.A. 2006. Cattle transfers between herds under paratuberculosis surveillance in The Netherlands are not random. Prev Vet Med, 76, 222–236.

Whittington R., Donat K., Weber M.F., Kelton D., Nielsen S.S. & Eisenberg S. 2019. Control of paratuberculosis: Who, why and how. A review of 48 countries. BMC Vet Res, 15, 198.

World Organisation for Animal Health (WOAH). 2020a. Handistatus interface: Animal Health Data (prior to 2005). http://web.oie.int/hs2/report.asp?lang=en.

World Organisation for Animal Health (WOAH). 2018. Paratuberculosis (Johne’s Disease). In The Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Office International des Epizooties, ed). Paris (France), 544–559.

World Organisation for Animal Health (WOAH). 2020b. World animal health information database (WAHIS) interface. https://www.oie.int/wahis_2/public/wahid.php/Wahidhome/Home.

Copyright (c) 2022 Angela Fanelli, Michela Galgano, Alessio Sposato, Domenico Buonavoglia