1
The occurrence and resistance of Shigella flexneri CECT4804 to acid stress in vitro and in vivo
PDF

Keywords

Adhesion
Fatty acid
Shigella flexneri
Pathogenicity
Viability

How to Cite

Taieb, I., Ellafi, A., Ben Younes, S. ., Feriani, A. ., Bakhrouf, A., Elmzoughi, R., Serrano, J. A. A. ., & Jabeur, C. (2023). The occurrence and resistance of Shigella flexneri CECT4804 to acid stress in vitro and in vivo. Veterinaria Italiana, 59(2). https://doi.org/10.12834/VetIt.2529.18140.2

Abstract

The ability to maintain intra‑cellular pH is crucial for many microbes mainly the enterobacteria to survive in diverse environments, particularly those that undergo fluctuations in pH. In this context, the growth and survival of Shigella flexneri at different acid pH values were evaluated to explain the response strategies involved in the adaptation of S. flexneri CECT4804 in acid stress conditions. Furthermore, the capacity of this strain to produce slime on Congo Red Agar, biofilm formation on polystyrene plate and hydrophobicity are reported. In addition, the modification of the membrane fatty acids profiles has been studied. Moreover, an infection with the stressed strain was realized on rats in rates and examined for their toxicity in intestine tissue. The obtained results show that the strain survival is strongly influenced by acidity. Indeed, the stressed and unstressed strains became biofilm positive after acid stress. A significant increase in the hydrophobicity percentage compared to the values found under normal conditions, is also noticed. For the membrane fatty acids analysis, the acidity induces several modifications in the membrane composition. After the infection, the gravest lesion was registered in the intestine of rats administered with the bacteria stressed at the lowest pH.

https://doi.org/10.12834/VetIt.2529.18140.2
PDF

References

Abdallah FB, Chaieb K, Zmantar T, Kallel H, and Bakhrouf A. 2009. Adherence assays and slime production of Vibrio alginolyticus and Vibrio parahaemolyticus. Braz. J. Microbiol 40: 394–398.

Abdul-Aziz A, Abdullah MFF, and Hussain NH. 2015. Inducible Acid Tolerance Response in Shigella sonnei and Shigella flexneri. Res. J. Microbiol. 10: 320–328.

Álvarez-Ordóñez A, Fernández A, López M, Arenas R, et al Bernardo A. 2008. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance. Int. J. Food Microbiol. 123: 212–219.

Álvarez-Ordóñez A, Fernández A, Bernardo A, et al López M. 2010. Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures. Food Microbiol. 27: 44–49.

Baumgarten T, Sperling, S., Seifert, J., von Bergen, M., Steiniger, F., Wick, L.Y., and Heipieper, H.J. 2012. Membrane Vesicle Formation as a Multiple-Stress Response Mechanism Enhances Pseudomonas putida DOT-T1E Cell Surface Hydrophobicity and Biofilm Formation. Appl. Environ. Microbiol. 78, 6217–6224.

Blanco, A.R., Sudano-Roccaro, A., Spoto, G.C., Nostro, A., and Rusciano, D. 2005. Epigallocatechin Gallate Inhibits Biofilm Formation by Ocular Staphylococcal Isolates. Antimicrob. Agents Chemother. 49, 4339–4343.

Casabonne, C., González, A., Aquili, V., and Balagué, C. 2016. Prevalence and Virulence Genes of Shigella spp. Isolated from Patients with Diarrhea in Rosario, Argentina. Jpn. J. Infect. Dis. 69, 477–481.

Chaieb, K., Chehab, O., Zmantar, T., Rouabhia, M., Mahdouani, K., and Bakhrouf, A. 2007b. In vitro effect of pH and ethanol on biofilm formation by clinical ica-positive Staphylococcus epidermidis strains. Ann. Microbiol. 57, 431–437.

Chan, Y.C., and Blaschek, H.P. 2005. Comparative analysis of Shigella boydii 18 foodborne outbreak isolate and related enteric bacteria: role of rpoS and adiA in acid stress response. J. Food Prot. 68, 521–527.

Chen, Y.Y., and Gänzle, M.G. 2016. Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli. Int. J. Food Microbiol. 222, 16–22.

Chen, Y., Liu, L., Fu, H., Wei, C., and Jin, Q. 2014. Comparative proteomic analysis of outer membrane vesicles from Shigella flexneri under different culture conditions. Biochem. Biophys. Res. Commun. 453, 696–702.

Cornelis, G.R. 2006. The type III secretion injectisome. Nat. Rev. Microbiol. 4, 811–825.

Costerton, J.W. 1999. Bacterial Biofilms: A Common Cause of Persistent Infections. Science 284, 1318–1322.

Coughlan, L.M., Cotter, P.D., Hill, C., and Alvarez-Ordóñez, A. 2016. New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry. Front. Microbiol. 7, 1641.

Ellafi, A., Lagha R., Ben Abdallah, F., Bakhrouf, A. 2012. Biofilm production, adherence and hydrophobicity of starved Shigella in seawater. Afr J Microbiol Res 6, 4355–4359.

Ellafi, A., Farhat, R., Snoussi, M., Noumi, A., El Hassane, A., Ben Ali, R., Véronique El May, M., Sayadi, S., Aouadij, K., Kadri, A., Ben Younes S. 2023. Phytochemical profiling, antimicrobial, antibiofilm, insecticidal and anti-leishmanial properties of aqueous extract from Juglans regia L. root bark: In vitro and in silico approaches. International Journal of Food Properties. 26: 1079-1097.

Fang, F.C., Frawley, E.R., Tapscott, T., and Vázquez-Torres, A. 2016. Bacterial Stress Responses during Host Infection. Cell Host Microbe 20, 133–143.

Foster, J.W. 1999. When protons attack: Microbial strategies of acid adaptation. Curr. Opin. Microbiol. 2, 170–174.

Fux, C.A., Costerton, J.W., Stewart, P.S., and Stoodley, P. 2005. Survival strategies of infectious biofilms. Trends Microbiol. 13, 34–40.

Goh, K., Chua, D., Beck, B., McKee, M.L., and Bhagwat, A.A. 2011. Arginine-dependent acid-resistance pathway in Shigella boydii. Arch. Microbiol. 193, 179–185.

Haddaji, N., Mahdhi, A.K., Ismaiil, M.B., and Bakhrouf, A. 2017. Effect of environmental stress on cell surface and membrane fatty acids of Lactobacillus plantarum. Arch. Microbiol. 199, 1243–1250.

Han, D., Hu, Y., Li, L., Tian, H., Chen, Z., Wang, L., Ma, H., Yang, H., Teng, K. 2014. Highly pathogenic porcine reproductive and respiratory syndrome virus infection results in acute lung injury of the infected pigs. Vet. Microbol. 169, 135–146.

Hodges, K., and Gill, R. 2010. Infectious diarrhea: Cellular and molecular mechanisms. Gut Microbes 1, 4–21.

Hosangadi, D., Smith, P.G., Kaslow, D.C., and Giersing, B.K. 2018. WHO consultation on ETEC and Shigella burden of disease, Geneva, 6–7th April 2017: Meeting report. Vaccine.

Jennison, A.V., and Verma, N.K. 2007. The acid-resistance pathways of Shigella flexneri 2457T. Microbiology 153, 2593–2602.

Kang, J., Liu, L., Liu, M., Wu, X., and Li, J. 2018. Antibacterial activity of gallic acid against Shigella flexneri and its effect on biofilm formation by repressing mdoH gene expression. Food Control 94, 147–154.

Kouidhi, B., Zmantar, T., Mahdouani, K., Hentati, H., and Bakhrouf, A. 2011. Antibiotic resistance and adhesion properties of oral Enterococci associated to dental caries. BMC Microbiol. 11, 155.

Krasowska, A., and Sigler, K. 2014. How microorganisms use hydrophobicity and what does this mean for human needs? Front. Cell. Infect. Microbiol. 4.

Lagha, R., Abdallah, F.B., Ellafi, A., Békir, K., and Bakhrouf, A. 2012. Biofilm Formation, Cell Surface Hydrophobicity, and Fatty Acids Analysis of Starved Salmonella enterica Serovar Typhimurium in Seawater.

Lagha, R., Bellon-Fontaine, M.-N., Renault, M., Briandet, R., Herry, J.-M., Mrabet, B., Bakhrouf, A., and Chehimi, M.M. 2015. Impact of long-term starvation on adhesion to and biofilm formation on stainless steel 316 L and gold surfaces of Salmonella enterica serovar Typhimurium. Ann. Microbiol. 65, 399–409.

Livio, S., Strockbine, N.A., Panchalingam, S., Tennant, S.M., Barry, E.M., Marohn, M.E., Antonio, M., Hossain, A., Mandomando, I., Ochieng, J.B., et al. 2014. Shigella Isolates from the Global Enteric Multicenter Study Inform Vaccine Development. Clin. Infect. Dis. 59, 933–941.

Loosdrecht, M.C., Lyklema, J., Norde, W., Schraa, G., and Zehnder, A.J. 1987. The role of bacterial cell wall hydrophobicity in adhesion. Appl. Environ. Microbiol. 53, 1893–1897.

Moorman, M.A., Thelemann, C.A., Zhou, S., Pestka, J.J., Linz, J.E., and Ryser, E.T. 2008. Altered hydrophobicity and membrane composition in stress-adapted Listeria innocua. J. Food Prot. 71, 182–185.

Nickerson, K.P., Chanin, R.B., Sistrunk, J.R., Rasko, D.A., Fink, P.J., Barry, E.M., Nataro, J.P., and Faherty, C.S. 2017. Analysis of Shigella flexneri Resistance, Biofilm Formation, and Transcriptional Profile in Response to Bile Salts. Infect. Immun. 85, e01067-16.

Niyogi, S.K. 2005. Shigellosis. J. Microbiol. Seoul Korea 43, 133–143.

Niyogi, S.K., Vargas, M., and Vila, J. 2004. Prevalence of the sat, set and sen genes among diverse serotypes of Shigella flexneri strains isolated from patients with acute diarrhoea. Clin. Microbiol. Infect. 10, 574–576.

Pompilio, A., Crocetta, V., Confalone, P., Nicoletti, M., Petrucca, A., Guarnieri, S., Fiscarelli, E., Savini, V., Piccolomini, R., and Di Bonaventura, G. 2010. Adhesion to and biofilm formation on IB3-1 bronchial cells by Stenotrophomonas maltophilia isolates from cystic fibrosis patients. BMC Microbiol. 10, 102.

Ramos-Morales, F. 2012. Acidic pH: Enemy or ally for enteric bacteria? Virulence 3, 103–106.

Saeed, A., Abd, H., and Sandstrom, G. 2015. Microbial aetiology of acute diarrhoea in children under five years of age in Khartoum, Sudan. J. Med. Microbiol. 64, 432–437.

Sasser, M. (1990) Identification of bacteria by gas chromatography of cellular fatty acids.

Sousa, M.Â.B., Mendes, E.N., Collares, G.B., Péret-Filho, L.A., Penna, F.J., and Magalhães, P.P. 2013. Shigella in Brazilian children with acute diarrhoea: prevalence, antimicrobial resistance and virulence genes. Mem. Inst. Oswaldo Cruz 108, 30–35.

Story, R.J., Aziz, A.A., Mohamad, S.A.S., and Abdullah, M.F.F. 2012. The adaptative acid tolerance of Shigella flexneri strain 307. In Humanities, Science and Engineering (CHUSER), 2012 IEEE Colloquium On, (IEEE), pp. 117–121.

Teixeira, H., Goncalves, M.G., Rozes, N., Ramos, A., and San Romao, M.V. 2002b. Lactobacillic Acid Accumulation in the Plasma Membrane of Oenococcus oeni: A Response to Ethanol Stress. Microb. Ecol. 43, 146–153.

Troeger, C., Forouzanfar, M., Rao, P.C., Khalil, I., Brown, A., Reiner, R.C., Fullman, N., Thompson, R.L., Abajobir, A., Ahmed, M., et al. 2017. Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect. Dis. 17, 909–948.

Villa-Rojas, R., Zhu, M.-J., Paul, N.C., Gray, P., Xu, J., Shah, D.H., and Tang, J. 2017. Biofilm forming Salmonella strains exhibit enhanced thermal resistance in wheat flour. Food Control 73, 689–695.

Warren, B.R., Parish, M.E., and Schneider, K.R. 2006. Shigella as a Foodborne Pathogen and Current Methods for Detection in Food. Crit. Rev. Food Sci. Nutr. 46, 551–567.

Wassef, J.S., Keren, D.F., and Mailloux, J.L. 1989. Role of M cells in initial antigen uptake and in ulcer formation in the rabbit intestinal loop model of shigellosis. Infect. Immun. 57, 858–863.

Xu, D., Zhang, W., Zhang, B., Liao, C., and Shao, Y. 2016. Characterization of a biofilm-forming Shigella flexneri phenotype due to deficiency in Hep biosynthesis. PeerJ 4, e2178.

Yang, G., Wang, L., Wang, Y., Li, P., Zhu, J., Qiu, S., Hao, R., Wu, Z., Li, W., and Song, H. 2015. hfq regulates acid tolerance and virulence by responding to acid stress in Shigella flexneri. Res. Microbiol. 166, 476–485.

Yang, J.-Y., Lee, S.-N., Chang, S.-Y., Ko, H.-J., Ryu, S., and Kweon, M.-N. 2014. A Mouse Model of Shigellosis by Intraperitoneal Infection. J. Infect. Dis. 209, 203–215.

Zaika, L.L. 2001. The effect of temperature and low pH on survival of Shigella flexneri in broth. J. Food Prot. 64, 1162–1165.

Zhao, B., and Houry, W.A. 2010. Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survivalThis paper is one of a selection of papers published in this special issue entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting - Protein Folding: Principles and Diseases” and has undergone the Journal’s usual peer review process. Biochem. Cell Biol. 88, 301–314.

Zhao, L., Xiong, Y., Meng, D., Guo, J., Li, Y., Liang, L., Han, R., Wang, Y., Guo, X., Wang, R., et al. 2017. An 11-year study of shigellosis and Shigella species in Taiyuan, China: Active surveillance, epidemic characteristics, and molecular serotyping. J. Infect. Public Health 10, 794–798.

Copyright (c) 2024 Ines Taieb, Ali Ellafi, Sonia Ben Younes, Anouar Feriani, Amina Bakhrouf, Ridha Elmzoughi, Juan Alfonso Ayala Serrano, Chedia Jabeur